Abstract

Withdrawal from a history of extended access to self-administered cocaine produces a time-dependent intensification of drug seeking, which might relate to a cocaine-induced imbalance in the relative expression of constitutively expressed Homer1 versus Homer2 isoforms within the ventromedial aspect of the prefrontal cortex (vmPFC). Thus, we employed immunoblotting to examine the relation between cue-reinforced lever pressing at 3- versus 30-day withdrawal from a 10-day history of extended access (6 hours/day) to intravenous cocaine (0.25 mg/infusion) or saline (Sal6h), and the expression of Homer1b/c and Homer2a/b within the vmPFC versus the more dorsomedial aspect of this structure (dmPFC). Behavioral studies employed adeno-associated virus (AAV) vectors to reverse cocaine-elicited changes in the relative expression of Homer1 versus Homer2 isoforms and tested animals for cocaine prime-, and cue-induced responding following extinction training. Cocaine self-administration elevated both Homer1b/c and Homer2a/b levels within the vmPFC at 3-day withdrawal, and the rise in Homer2a/b persisted for at least 30 days. dmPFC Homer levels did not change as a function of self-administration history. Reversing the relative increase in Homer2 versus Homer1 expression via Homer1c overexpression or Homer2b knockdown failed to influence cue-reinforced lever pressing when animals were tested in a drug-free state, but both AAV treatments prevented cocaine-primed reinstatement of lever-pressing behavior. These data suggest that a cocaine-elicited imbalance in the relative expression of constitutively expressed Homer2 versus Homer1 within the vmPFC is necessary for the capacity of cocaine to reinstate drug-seeking behavior, posing drug-induced changes in vmPFC Homer expression as a molecular trigger contributing to drug-elicited relapse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call