Abstract

A novel and sensitive fluorescence biosensor based on aptamer and rolling circle amplification for the determination of cocaine was developed in the present work. Here cocaine aptamers immobilized onto Au nanoparticles modified magnetic beads hybridized with short DNA strand. In the presence of cocaine, the short DNA strand was displaced from aptamer owing to cocaine specially binding with aptamer. Next, the short DNA strand was separated by magnetic beads and used to originate rolling circle amplification as primer. The end products of rolling circle amplification were detected by fluorescence signal generation upon molecular beacons hybridizing with the end products of rolling circle amplification. With rolling circle amplification and the separation by magnetic beads reducing the background signal, the new strategy was suitable for the detection of as low as 0.48 nM cocaine. Compared with reported cocaine sensors, our method exhibited excellent sensitivity. Our new strategy may provide a platform for numerous proteins and low molecular weight analytes to highly sensitively detect by DNA amplification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call