Abstract

Rodents learn to associate the rewarding effects of drugs with the environment in which they are encountered and, subsequently, will display a conditioned place preference (CPP) for that environment. Cocaine-induced CPP is generally thought to be mediated through inhibition of the dopamine transporter and the consequent increase in extracellular dopamine. However, here we report that dopamine-deficient (DD) mice formed a CPP for cocaine that was not blocked by a dopamine D1-receptor antagonist. Fluoxetine, a serotonin transporter (SERT) inhibitor, produced CPP in DD, but not control mice, suggesting that serotonin mediates cocaine CPP in DD mice. Inhibition of dopamine neuron firing by pretreatment with quinpirole, a dopamine D2-receptor agonist, blocked both cocaine- and fluoxetine-induced CPP in DD mice. These findings are consistent with the hypothesis that, in the absence of dopamine, cocaine-mediated SERT blockade activates dopamine neurons, which then release some other neurotransmitter that contributes to cocaine reward in DD mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.