Abstract

The dopamine system—essential for mood and movement—can be activated in two ways: by excitatory inputs that cause burst firing and stamp-in learning or by slow excitatory or inhibitory inputs—like leptin, insulin, ghrelin, or corticosterone—that decrease or increase single-spike (pacemaker) firing rate and that modulate motivation. In the present study we monitored blood samples taken prior to and during intravenous cocaine or saline self-administration in rats. During cocaine-taking, growth hormone and acetylated ghrelin increased 10-fold; glucagon-like peptide-1 (GLP-1) doubled; non-acetylated ghrelin, insulin-like growth factor-1 (IGF-1), and corticosterone increased by 50% and adiponectin increased by 17%. In the same blood samples, leptin, insulin, gastric inhibitory polypeptide (GIP), and prolactin decreased by 40–70%. On the first day of testing under extinction conditions—where the animals earned unexpected saline instead of cocaine—5-fold increases were seen for growth hormone and acetylated ghrelin and equal changes—in amplitude and latency—were seen in each of the other cases except for IGF-1 (which increased at a slower rate). Single-spike firing affects the tonic activation level of the dopamine system, involving very different controls than those that drive burst firing; thus, the present data suggest interesting new targets for medications that might be used in the early stages of drug abstinence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.