Abstract

Biaxial creep tests on HANA-4 tubes, Nb-added Zircaloy-4 were conducted using internal pressurization of closed-end tubes to investigate the rate-controlling mechanisms over a range of hoop stresses, \( 8.38 \times 10^{ - 5} E - 2.87 \times 10^{ - 3} E \), at three different temperatures 673 K, 723 K, and 773 K (400 °C, 450 °C, and 500 °C). The mechanistic creep parameters such as stress exponent (n) and activation energy (Q C) were then determined from steady-state creep rates. Based on the variance in stress exponent with respect to the applied stress, three regimes have been identified: a stress exponent close to 1 at low stresses that increased to 3 at the intermediate stresses, which became 4.5 at high stresses. An activation energy value of 226 kJ/mol was evaluated for the n = 3 and n = 4.5 regimes, which lies close to the activation energy for self-diffusion (Q L) in α-Zr alloys. Further, TEM analyses of crept microstructures and comparison of experimental results with standard models were undertaken to find out the rate-controlling mechanisms. Coble creep, climbing of dislocations to bypass β-Nb precipitates, and dynamic recovery by edge dislocation climb are proposed as the rate-controlling mechanisms in the n = 1, n = 3, and n = 4.5 regimes of HANA-4, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call