Abstract

In ruminants, Co is required for the synthesis of vitamin B12, which in turn is needed for the resynthesis of methionine by methylation of homocysteine and thus, cobalamin deficiency may induce hyperhomocysteinaemia which is brought into context with perturbations of the antioxidative-prooxidative balance. The present study was conducted to explore whether Co deficiency in cattle is also associated with homocysteine-induced disturbances of oxidative status. Co deficiency was induced in cattle by feeding two groups of animals on either a basal maize-silage-based diet that was moderately low in Co (83 micrograms Co/kg DM), or the same diet supplemented with Co to a total of 200 micrograms Co/kg DM, for 43 weeks. Co deficiency was apparent from a reduced vitamin B12 status in serum and liver and an accumulation of homocysteine in plasma which was in excess of 4.8 times higher in Co-deprived cattle than in controls. The much increased level of circulating homocysteine did not indicate severe disturbances in antioxidant-prooxidant balance as measured by individual markers of lipid peroxidation, protein oxidation, and the antioxidative defence system. There were no quantitative difference in plasma thiol groups, nor were there significant changes in concentrations of alpha-tocopherol, microsomal thiobarbituric acid-reactive substances and carbonyl groups in liver. However, there was a trend toward increased plasma carbonyl levels indicating a slight degradation of plasma proteins in the hyperhomocysteinaemic cattle. Analysis of the hepatic catalase (EC 1.11.1.6) activity revealed an 11% reduction in Co-deficient cattle relative to the controls. These results indicate that long-term moderate Co deficiency may induce a severe accumulation of plasma homocysteine in cattle, but considerable abnormalities in oxidative status failed to appear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.