Abstract

The antiferromagnetically spin-coupled copper(II) pair in Neurospora tyrosinase was substituted by cobalt, yielding a stoichiometry of 2 mol of Co/mol of protein. The low magnitude of the high-spin Co(II) EPR signal indicates spin coupling of the two Co(II) ions similar to that observed in the native enzyme. The absorption spectrum with four transitions in the visible region of intermediate intensity (epsilon 607(670), epsilon 564(630), epsilon 526(465)), a shoulder at 635 nm, and the near-infrared bands at 1180 (epsilon 30) and 960 nm (epsilon 15) indicate tetrahedral coordination around the Co(II) center. The cobalt(II) tyrosinase is enzymatically inactive, and there is no evidence that it binds molecular oxygen. Upon addition of cyanide or the competitive tyrosinase inhibitors L-mimosine, benzoic acid, or benzhydroxamic acid te absorption spectrum changes in a characteristic manner. This optical perturbation shows that binding of these inhibitors (and presumably of the substrates) occurs at or near the metal site. One Co(II) ion can be removed preferentially by incubation with KCN at high pH, indicating the two ions not to be in an identical environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call