Abstract

Series of Co-doped CuS-Montmorillonite (Co/CuS-MMT) nanocomposites with different mole ratio of Co2+ to Cu2+ have been prepared via a simple hydrothermal route. Co/CuS-MMT has been firstly demonstrated to possess an intrinsic peroxidase-like activity with the aid of the chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB). The colorless TMB is rapidly oxidized into blue oxTMB by H2O2 only in 3 min, which is obviously distinguished by the naked eye. Among series of Co/CuS-MMT, 50Co/CuS-MMT (Co2+ doping is set to 50 atomic percentage (at%)) exhibited the highest peroxidase-like activity, in accordance with the typical Michaelis-Menten kinetics. The catalytic activity of Co/CuS-MMT is dependent on temperature, pH and the amount of Co2+, respectively. The excellent peroxidase-like performance is attributed to the OH generated in the process of catalytic reaction. Based on the peroxidase-like activity of 50Co/CuS-MMT, a fast colorimetric H2O2 sensing platform was constructed in a linear response range (10–100 μM) with a relative low detection limit (2.2 μM). This fast sensitive colorimetric sensor is conveniently applied to detect H2O2 residue in contact lens solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call