Abstract

Separation of cobalt from mixed-waste mobile phone batteries containing LiCoO2 cathodic active material was investigated using selective precipitation and chelating resin. Cobalt was recovered from the active powder materials containing 47 % Co oxide together with Mn, Cu, Li, Al, Fe, and Ni oxides. The metal ions were leached sufficiently using 4 M HCl. The metal ions detected spectrophotometrically were removed from the leaching solution by selective precipitation at pH 5.5, with cobalt loss of 27.5 %. Conditions for achieving a recovery of Co in the filtrate by chelating resin were determined experimentally by varying the pH and time of the reaction, as well as the initial resin-to-liquid ratio. The cobalt was efficiently determined by absorption spectrometry at λ max 510 nm. Chelating polyamidoxime resin was synthesized by polymerization of acrylonitrile and followed by amidoximation reaction. Physically cross-linked gel of polyacrylonitrile was made by a cooling technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call