Abstract

Three types of porous polymer microspheres immobilized with cobalt porphyrins appending p–H, p-Cl and p-NO2 phenyl substituents (designated as CoPP-GMA/MMA, CoCPP-GMA/MMA and CoNPP-GMA/MMA, respectively) were prepared. Their catalytic activities on the oxidation of 2-naphthol to 2-hydroxy-1,4-naphthoquinone by molecular oxygen were investigated in alkaline methanol. The experimental results showed that the porous microsphere supported cobalt porphyrin catalysts could effectively activate molecular oxygen, and 2-naphthol was selectively oxidized to 2-hydroxy-1,4-naphthoquinone with high conversion in alkaline methanol. A phenomenon of distance-dependent catalytic activity was observed and a critical distance of 3.8 nm between porphyrins was determined for the porous polymer microsphere supported catalyst. More interestingly, the activity of the recycled catalyst increased gradually with the increased times of reuse. These results may be helpful in designing highly efficient metalloporphyrin catalysts. The catalytic oxidation of 2-naphthol to 2-hydroxy-1,4-naphthoquinone (HNQ) by molecular oxygen was performed in alkaline methanol using supported cobaltporphyrin as catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.