Abstract

Heterogenization of biomolecules by immobilizing on a metal oxide support could greatly enhance their catalytic activity and stability, but their interactions are generally weak. Herein, cobalt phthalocyanine (CoPc) molecules were firmly anchored on a Ce-based metal-organic framework (Ce-BTC) due to π-π stacking interaction between CoPc and aromatic frameworks of the BTC linker, which was followed by a calcination treatment to convert Ce-BTC to mesoporous CeO2 and realize a molecular-level dispersion of CoPc on the surface of CeO2. Various characterization results confirm the successful fabrication of molecular-based CoPc/CeO2 catalysts which exhibited good CO oxidation performance. Importantly, we found that the mixing manner of Ce-BTC and CoPc remarkably affects the physicochemical properties which then determined the catalytic performance of the resultant CoPc/CeO2 catalysts. In contrast, the direct physical mixing of CoPc and CeO2 led to poor performance toward CO oxidation, manifesting that the Ce-BTC-mediated CoPc loading strategy is promising for the heterogenization of catalytic biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call