Abstract

It is a challenging task to research oxygen reduction electrocatalysts with cost-effectiveness, high-performance and ultra-stability to replace traditional noble metal catalysts in renewable energy conversion/storage devices. Herein, cobalt phosphide (Co2P) nanoparticles encapsulated in Mn, N co-doped porous carbon nanosheets with abundant nanoholes (Co2P/Mn,N-PCNS) were prepared by a alizarin complexone coordination regulated pyrolysis at 800 °C. In the controlled experiments, the pyrolysis temperature and metal types were investigated in details. The resultant catalyst exhibited rapid mass/charge transfer and superior oxygen reduction reaction (ORR) performance (Eonset = 0.96 V; E1/2 = 0.86 V vs RHE), surpassing commercial Pt/C. This work presents some constructive guidelines for synthesis of appealing ORR electrocatalysts in renewable energy technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.