Abstract
Production of hydrogen from photocatalytic water splitting holds promise as an alternative energy source with superiority of cleanliness, environment friendliness, low price, and sustainability. Perfectly constructing the noble-metal-free and stable hybrid structure photocatalyst is quite essential; herein, for the first time the authors aim to use cobalt phosphide as the cocatalyst on titanium oxide to form a novel hybrid structure to enhance the utilization of the photoexcited electrons in redox reactions for improved photocatalytic H2 evolution activity. Thus, the achieved significantly increased photocatalytic H2 -evolution rate on the optimized CoP/TiO2 (8350 µmol h-1 g-1 ) is 11 times higher than that of the pristine TiO2 . Moreover, this work is expected to spur more insight into synthesizing such novel photofunctional systems, achieving high photocatalytic H2 evolution activity and sufficient stability for solar-to-chemical conversion and utilization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.