Abstract

Cocatalysts play important roles in photocatalytic and photoelectrochemical water splitting reactions. However, the formation of well-defined junctions between low dimensional semiconductors and cocatalysts is still challenging. In this study, CdS nanorod photoanodes loaded with cobalt phosphate (CoPi) cocatalyst were synthesized by a facile two-step route, in which CdS nanorods were prepared using a hydrothermal method followed by photo-assisted electrodeposition of CoPi. It was found that the formation of intimate junctions between CoPi and CdS nanorods in the form of Co–S bonding effectively facilitated the charge separation and lowered the activation energy of the water oxidation reaction. This resulted in highly efficient and stable photoelectrochemical water splitting on the CdS photoanode. The optimal CdS/CoPi photoanode showed a maximum photocurrent of 4.7 mA/cm2 at 0 V versus reversible hydrogen electrode under an AM 1.5 G solar simulator, which was 5.5-fold higher than that of bare CdS photoanode. This work expands the potential application of the cocatalyst CoPi in CdS photoanode systems and improves our understanding of the nature of cocatalysts with well-defined interface junctions in semiconductors. Well-defined interfacial junction with Co–S bonding over cobalt phosphate cocatalyzed CdS nanorod photoanode facilitates the charge separation and lowers the activation energy, thus achieving a considerable photocurrent of 4.7 mA/cm2 at 0 V vs. RHE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call