Abstract

This study reports a simple, economic, and efficient approach for synthesis of cobalt oxide (Co3O4) nanostructures by a low-temperature aqueous chemical growth method. The synthesized Co3O4 nanostructures were characterized by various techniques such as x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy. The synthesized nanostructures exhibited flower-shaped morphology with thickness of each pellet in the range of 200 to 300 nm. The synthesized Co3O4 nanostructures with excellent structural features exhibited high electrocatalytic activity towards the oxidation of glucose in alkaline solution. This enabled development of a highly sensitive (1618.71 µA mM−1 cm−2), stable and reproducible non-enzymatic glucose sensor. The developed sensor demonstrated high anti-interference capability against common interferents such as dopamine, ascorbic acid and uric acid. Furthermore, the applicability of the developed sensor for the determination of glucose from human blood serum provides an alternative approach for the routine glucose analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.