Abstract

Two cobalt complexes containing coordinated N-heterocyclic phosphenium (NHP+) ligands are synthesized using a bidentate NHP+/phosphine chelating ligand, [PP]+. Treatment of Na[Co(CO)4] with the chlorophosphine precursor [PP]Cl (1) affords [PP]Co(CO)2 (2), which features a planar geometry at the NHP+ phosphorus center and a short Co-P distance [1.9922(4) Å] indicative of a Co═P double bond. The more electron-rich complex [PP]Co(PMe3)2 (3), which is synthesized in a one-pot reduction procedure with 1, CoCl2, PMe3, and KC8, has an even shorter Co-P bond [1.9455(6) Å] owing to stronger metal-to-phosphorus back-donation. The redox properties of 2 and 3 were explored using cyclic voltammetry, and oxidation of 3 was achieved to afford [[PP]Co(PMe3)2]+ (4). The electron paramagnetic resonance spectrum of complex 4 features hyperfine coupling to both 59Co and 31P, suggesting strong delocalization of the unpaired electron density in this complex. Density functional theory calculations are used to further explore the bonding and redox behavior of complexes 2-4, shedding light on the potential for redox noninnocent behavior of NHP+ ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.