Abstract
Despite the accessibility of numerous transition metal polyphosphido complexes through transition-metal-mediated activation of white phosphorus, the targeted functionalization of Pn ligands to obtain functional monophosphorus species remains challenging. In this study, we introduce a new [3+1] fragmentation procedure for cyclo-P4 ligands, leading to the discovery of acylcyanophosphanides and -phosphines. Treatment of the complex [K(18c-6)][(Ar*BIAN)Co(η4 -P4 )] ([K(18c-6)]3, 18c-6=[18]crown-6, Ar*=2,6-dibenzhydryl-4-isopropylphenyl, BIAN=1,2-bis(arylimino)acenaphthene diimine) with acyl chlorides results in the formation of acylated tetraphosphido complexes [(Ar*BIAN)Co(η4 -P4 C(O)R)] (R=tBu, Cy, 1-Ad, Ph; 4 a-d). Subsequent reactions of 4 a-d with cyanide salts yield acylated cyanophosphanides [RC(O)PCN]- (9 a-d- ) and the cyclo-P3 cobaltate anion [(Ar*BIAN)Co(η3 -P3 )(CN)]- (8- ). Further reactions of 4 a-d with trimethylsilyl cyanide (Me3 SiCN) and isocyanides provide insight into a plausible mechanism of this [3+1] fragmentation reaction, as these reagents partially displace the P4 C(O)R ligand from the cobalt center. Several potential intermediates of the [3+1] fragmentation were characterized. Additionally, the introduction of a second acyl substituent was achieved by treating [K(18c-6)]9b with CyC(O)Cl, resulting in the first bis(acyl)monocyanophosphine (CyC(O))2 PCN (10).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.