Abstract

Aqueous ammonium ion hybrid supercapacitor (A-HSC) is an efficient energy storage device based on nonmetallic ion carriers (NH4+), which combines advantages such as low cost, safety, and sustainability. However, unstable electrode structures are prone to structural collapse in aqueous electrolytes, leading to fast capacitance decay, especially in host materials represented by vanadium-based oxidation. Here, the Co2+ preintercalation strategy is used to stabilize the VO2 tunnel structure and improve the electrochemical stability of the fast NH4+ storage process. In addition, the understanding of the NH4+ storage mechanism has been deepened through ex situ structural characterization and electrochemical analysis. The results indicate that Co2+ preintercalation effectively enhances the conductivity and structural stability of VO2, and inhibits the dissolution of V in aqueous electrolytes. In addition, the charge storage mechanisms of NH4+ intercalation/deintercalation and the reversible formation/fracture of hydrogen bonds were revealed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.