Abstract

Anilines as important intermediates for both organic synthesis and industrial manufactory are densely substituted with a variety of functional moieties, and the transformation of nitroarenes into corresponding anilines requires catalytically selective hydrogenation catalyst. Herein, we describe a simple pyrolysis strategy to prepare cobalt catalysts in nitrogen-doped carbon matrix applied in the selective hydrogenation of nitroarenes with molecular hydrogen. The Co/NC catalysts are obtained through thermal treatment of mixed precursors of cobalt phthalocyanine and melamine. The surface-modified Co particles with Co3O4 and CoNx sites are surrounded by N-doped carbon layers according to a series of structural characterization results. These Co/NC catalysts are capable of efficiently selective hydrogenation of nitrobenzene and various substituted nitroarenes into corresponding anilines under relatively mild reaction conditions. The optimal catalytic hydrogenation performance is contributed to the fast rate of H2 dissociated activation on the CoNx active sites and the facile adsorption of the reactant substances, which is verified by the isotopic H2-D2 exchange experiments, reactant adsorption and the ORR reaction tests. Furthermore, the heterogeneous Co/NC catalyst is highly stable without the Co leaching and deactivation issues during the recycling reaction runs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.