Abstract
AbstractBACKGROUND: Ethylene oligomerization is the major industrial process to produce linear α‐olefins. Recently much work has been devoted to late transition metal catalysts used in this process, especially those with 2,6‐bis(imino)pyridyl dihalide ligands. Considering that most work has focused on simple modification to the substituents in imino‐aryl rings based on the symmetric bis(imino)pyridyl framework, here we expand this work to the asymmetric mono(imino)pyridyl ligands.RESULTS: The preparation, structure and ethylene polymerization/oligomerization behavior of series of mono(imino) pyridyl–MCl2 and bis(imino)pyridyl–MXn complexes are presented. The systematic studies were focused on the relationship between the catalytic behavior of these complexes for ethylene polymerization/oligomerization and reaction conditions, ligand structures, metal centers and counter‐anions. The influence of the coordination environment on catalyst behavior is also discussed.CONCLUSION: For mono(imino)pyridyl–Co(II) and Ni(II) catalysts bearing the Cl− counter‐anion, good activities ranging from 0.513 × 105 to 1.58 × 105 g polyethylene (mol metal)−1 h−1 atm−1 are afforded, and the most active catalysts are those with methyl in both ortho‐ and para‐positions of the imine N‐aryl ring. For bis(imino)pyridyl–Co(II) and Ni(II) catalysts bearing the SO42− and NO3− counter‐anions, the low activities for ethylene oligomerization are in sharp contrast to those of their chloride analogues. Copyright © 2009 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.