Abstract
A novel cobalt hydrogen-bonded organic framework (Co-HOF, C24H14CoN4O8) was synthesized from a mixed linker, that is, 2,5-pyridinedicarboxylic acid (PDC) and 2,2'-bipyridyl (BPY) linkers and cobalt ion through a simple, one-pot, low-cost, and scalable solvothermal method. The Co-HOF was fully characterized using several analytical and spectroscopic techniques including single-crystal X-ray diffraction, diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray, and X-ray photoelectron spectroscopy. The Co-HOF exhibits high thermal and chemical stabilities compared to previously reported HOF materials. Moreover, Co-HOF shows excellent photocatalytic activity under visible light irradiation due to its narrow band gap of 2.05 eV. The cycloaddition reaction of CO2 to variable epoxides was investigated to evaluate the photocatalytic performance of Co-HOF under visible light radiation and was found to produce the corresponding cyclic carbonates in yields up to 99.9%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.