Abstract

Magnetic nanoferrites (MFe2O4, M = Co, Ni) were successfully synthesised through microwave-hydrothermal route, characterised and used for adsorption of Eriochrome Black T (EBT) and Bromophenol Blue (BRB) dyes from their aqueous solution. The powder XRD patterns confirmed the formation of cubic spinel structure for both the ferrites. Under identical conditions, the adsorption efficiency of CoFe2O4 was found relatively higher than the corresponding NiFe2O4. Further characterisations revealed that CoFe2O4 sample was nearly spherical in size (8–9 nm) with narrow size distribution. The sample showed superparamagnetic behaviour with saturation magnetization (Ms) value (66.4 emu/g). BET surface area calculated for the synthesized cobalt ferrite as 70.9 m2/g. Batch adsorption experiments as a function of initial dye concentration, pH, contact time and adsorbent dose showed the adsorption of dyes depends on pH. Equilibrium adsorption data were well explained by both Langmuir and Freundlich isotherm models. The maximum monolayer adsorption capacities (Qo) were found to be 82.6 and 25.6 mg/g for EBT and BRB dyes, respectively. Kinetics of the adsorption was best described by pseudo-second-order model. Various thermodynamic parameters such as ΔG, ΔH and ΔS derived from adsorption data over the temperature range 20–50 °C, accounted for a favourable, spontaneous, endothermic physisorption process. The materials showed potential for repeated use without significant decrease in adsorption capacity after proper regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call