Abstract

Reported N(2) complexes of cobalt do not have substantial weakening of the N-N bond. Using diketiminate ligands to enforce three-coordinate geometries, we have synthesized several novel CoNNCo complexes. In formally univalent complexes, cobalt is poorer than iron at weakening the N-N bond, but in formally zerovalent complexes, cobalt and iron give similar N-N weakening. The weakening is due to cobalt-to-N(2) pi-backbonding, and potassium cations pull more electron density into N(2). These results show that the low coordination number of a trigonal-planar geometry is impetus enough to make even the electronegative cobalt weaken the N-N bond of N(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.