Abstract
This paper describes the effect of nanosecond pulsed electrical discharges generated in distilled water on cobalt-modified fluorinated polyimide (PI) films derived from hexafluoroisopropylidendiphthalic dianhydride and 4,4’-diamino-3,3’-dimethyl diphenylmethane. The PI films have been characterized by dielectric spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction (XRD) measurements. The relative permittivity of the PI films increased after treatment by water plasma. The XRD analysis has shown a slight increase of the degree of intermolecular ordering and stronger $\pi $ – $\pi $ interactions with the increase of the plasma treatment time. Application of nanosecond high-voltage pulses has induced an increase in concentration of CF3 groups at the polymer surface. A decrease of the cobalt and chlorine fractions, due to their migration into water, and an increase of aliphatic C–C bonds at the film surface may be responsible for the relative permittivity modification after exposure to water plasma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.