Abstract

Covalent organic frameworks (COFs) have recently emerged as a new class of photocatalysts. However, integrated design is crucial to maximizing the performance of COF-incorporating photocatalytic systems. Herein, we compare two strategies of installing earth-abundant metal-based catalytic centers into the matrice of a 2D COF named NUS-55. Compared to NUS-55(Co) prepared from the post-synthetic metalation of coordination sites within the COF, the molecular co-catalyst impregnated NUS-55/[Co(bpy)3]Cl2 achieves a seven-fold improvement in visible light-driven H2 evolution rate to 2,480 μmol g−1 h−1, with an apparent quantum efficiency (AQE) of 1.55% at 450 nm. Our results show that the rational design of molecular anchoring sites in COFs for the introduction of catalytic metal sites can be a viable strategy for the development of highly efficient photocatalysts with enhanced stability and photocatalytic activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.