Abstract

We evaluated the effect of cobalt chloride (CoCl2) on TNF-α and IFN-γ-induced-inflammation and reactive oxygen species (ROS) in renal tubular epithelial cells (HK-2 cells). We treated HK-2 cells with CoCl2 before the administration of TNF-α/IFN-γ. To regulate hemeoxygenase-1 (HO-1) expression, the cells were treated CoCl2 or HO-1 siRNA. CoCl2 reduced the generation of ROS induced by TNF-α/IFN-γ. TNF-α/IFN-γ-treated-cells showed an increase in the nuclear translocation of phosphorylated NF-κBp65 protein, the DNA-binding activity of NF-κBp50 and NF-κB transcriptional activity and a decrease in IκBα protein expression. These changes were restored by CoCl2. We noted an intense increase in monocyte chemoattractant protein-1 (MCP-1) and regulated on activation normal T cell expressed and secreted (RANTES) production in TNF-α/IFN-γ-treated cells. We demonstrated that this effect was mediated through NF-κB signaling because an NF-κB inhibitor significantly reduced MCP-1 and RANTES production. CoCl2 effectively reduced MCP-1 and RANTES production. The expression of HO-1 was increased by CoCl2 and decreased by HO-1 siRNA. However, knockdown of HO-1 by RNA interference did not affect MCP-1 or RANTES production. We suggest that CoCl2 has a protective effect on TNF-α/IFN-γ-induced inflammation through the inhibition of NF-κB and ROS in HK-2 cells. However, CoCl2 appears to act in an HO-1-independent manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.