Abstract
Hard carbon is expected to be a high-capacity anode material for sodium-ion batteries (SIBs). However, its Na+ storage performance, especially the low discharge capacity, remains a great challenge. Herein, the soft-hard carbon composite anodes with high degree of graphitization were synthesized via low-temperature pyrolysis (at only 900 °C) of Cobalt-catalyzed perylene tetracarboxylic dianhydride (PTCDA-Co) and cotton, with subsequent removal of cobalt. The composite resulting from a 2:3 mass ratio of soft to hard carbon exhibits a good discharge capacity of 355.81 mAh g−1 at a current density of 50 mA g−1 and an enhanced initial Coulombic efficiency (ICE) of 81.41%. The enhanced electrochemical storage performance of cotton is attributed to the introduction of PTCDA-Co, which creates low-defect graphitic layer, hierarchical porous channels, and carbon shielding coating on hard carbon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.