Abstract

[reaction: see text] An efficient cobalt-catalyzed reductive coupling reaction of alkyl halides with electron-withdrawing alkenes (CH(2)=CR(1)EWG, EWG = electron-withdrawing group) in the presence of water and zinc powder in acetonitrile to give the corresponding Michael-type addition product (RCH(2)CR(1)EWG) was described. The methodology is versatile such that unactivated primary, secondary, and tertiary alkyl bromides and iodides and various conjugated alkenes including acrylates, acrylonitrile, methyl vinyl ketone, and vinyl sulfone all successfully participate in this coupling reaction. For the alkyl halides used in the reaction, the iodides generally gave better yields compared to those of the corresponding bromides. It is a unique method employing CoI(2)dppe, zinc, and alkyl halides, affording conjugate addition products in high yields. Mechanistically, the reaction appears to follow an oxidative addition driven route rather than the previously reported radical route.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.