Abstract

The direct concurrent installation of amide and ester groups across olefin motifs represents a powerful and promising functionalization tool in organic chemistry. Herein, a ligand-free cobalt-catalyzed four-component radical relay carbonylative difunctionalization of ethylene for the synthesis of 4-oxobutanoates has been developed. Valuable C4 building blocks were produced in a highly atom-economical fashion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.