Abstract

We show that cobalt bis(acetylacetonate) [Co(acac)2], tert-butyl hydroperoxide (TBHP), and triethylsilane (Et3SiH) constitute an inexpensive, general, and practical reagent combination to initiate a broad range of Markovnikov-selective alkene hydrofunctionalization reactions. These transformations are believed to proceed by cobalt-mediated hydrogen atom transfer (HAT) to the alkene substrate, followed by interception of the resulting alkyl radical intermediate with a SOMOphile. In addition, we report the first reductive couplings of unactivated alkenes and aryldiazonium salts by an HAT pathway. The simplicity and generality of the Co(acac)2–TBHP–Et3SiH reagent combination suggests it as a useful starting point to develop HAT reactions in complex settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.