Abstract

We present a multitechnique investigation of the structural and electronic properties of the prototypical system composed by ultra-thin films of magnetic molecules [Co-tetraphenyl-porphyrins (Co-TPP)] grown on a ferromagnetic substrate [oxygen passivated Fe(0 0 1), namely the Fe(0 0 1)-p(1 × 1)O surface]. Low Energy electron diffraction (LEED) and scanning tunneling microscopy (STM), coupled with first-principles calculations, reveal the formation of a commensurate superstructure at monolayer coverage, made by a square array of flat-lying TPP molecules. UV–photoemission and inverse photoemission spectroscopies (UPS and IPES) are used to investigate their electronic structure. Similar to our previous results on the Zn–TPP growth on Fe(0 0 1)–p(1 × 1)O, the passivation of the metallic surface is able to preserve the photoemission features characteristic of quasi-free molecules, opening the route towards an exploitation of single oxide layers as protective films in organic/inorganic junctions. X-ray photoemission (XPS) and near edge X-ray adsorption fine structure spectroscopies (NEXAFS), are used to reveal the details of the Co–TPP interaction with the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call