Abstract

Cobalt-chromium-molybdenum (CoCrMo) alloys are routinely used in arthroplasty. CoCrMo wear particles and ions derived from arthroplasty implants lead to macrophage-driven adverse local tissue reactions, which have been linked to an increased risk of periprosthetic joint infection after revision arthroplasty. While metal-induced cytotoxicity is well characterized in human macrophages, direct effects on their functionality have remained elusive. Synchrotron radiation X-ray microtomography and X-ray fluorescence mapping indicated that peri-implant tissues harvested during aseptic revision of different arthroplasty implants are exposed to Co and Cr in situ. Confocal laser scanning microscopy revealed that macrophage influx is predominant in patient tissue. While in vitro exposure to Cr3+ had only minor effects on monocytes/macrophage phenotype, pathologic concentrations of Co2+ significantly impaired both, monocyte/macrophage phenotype and functionality. High concentrations of Co2+ led to a shift in macrophage subsets and loss of surface markers, including CD14 and CD16. Both Co2+ and Cr3+ impaired macrophage responses to Staphylococcus aureus infection, and particularly, Co2+-exposed macrophages showed decreased phagocytic activity. These findings demonstrate the immunosuppressive effects of locally elevated metal ions on the innate immune response and support further investigations, including studies exploring whether Co2+ and Cr3+ or CoCrMo alloys per se expose the patients to a higher risk of infections post-revision arthroplasty.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call