Abstract
Cobalt is commonly admitted as being a promising catalyst in accelerating NaBH4 hydrolysis, being as reactive as noble metals and much more cost-effective. This is the topic of the present paper. Herein, we survey (i) the NaBH4-devoted literature while especially focusing on the Co catalysts and (ii) our work on the same topic. Finally, we report (iii) reactivity results of newly developed Co-based catalysts. From both surveys, it mainly stands out that Co has been investigated as catalysts in various forms: namely, as chlorides, reduced nanoparticles (metal Co, Co boride, Co-B alloy), supported over supports and shaped. In doing so the reactivity can be easily varied achieving H2 generation rates from few to >1000 L(H2)/min·g (metal). Nevertheless, our work can be distinguished from the NaBH4 literature. Indeed, we are working on strategies that focus on making alternative Co-based catalysts. One of these strategies is illustrated here as we report new reactivity data of Co-based bimetallic supported catalysts. For example, we show that 20 wt% Co90Y10/γAl2O3-20 wt% Co95Hf5/γAl2O3 > 20 wt% Co99Zr1/γAl2O3 > 20 wt% Co/γAl2O3, the best catalysts showing HGRs of about 245 mL(H2)/min or 123 L(H2)/min·g (metals).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.