Abstract

Analysis of the solid-state powder59Co NMR spectra of ten simple inorganic cobalt(III) complexes at 11.75, and in most cases, 4.7 T have permitted the assignment of specific ligand planes to ranges of values of the observed chemical shift principal components. The relevant chemical shift components were determined from the simulations of the powder line shapes. These simulations also provided the relative orientations of the chemical shift (CS) and electric field gradient (efg) tensors, as well as magnitude and asymmetry of the59Co quadrupolar coupling. Using symmetry arguments and ab initio calculations, as appropriate or necessary, the orientations of the efg tensors in the molecular frame were deduced. This allowed the determination of the CS tensors in the molecular frame and thus assignment of the ligand planes responsible for the observed values of chemical shifts.Key words: cobalt, chemical shift, quadrupolar coupling, solid state NMR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call