Abstract

Electrospun fibers show potential as a topical delivery system for vaginal microbicides. Previous reports have demonstrated delivery of anti-HIV and anti-STI (sexually transmitted infection) agents from fibers formulated using hydrophilic, hydrophobic, or pH-responsive polymers that result in rapid, prolonged, or stimuli-responsive release, respectively. However, coaxial electrospun fibers have yet to be evaluated as a highly tunable microbicide delivery vehicle. In this research, we explored the opportunities and limitations of a model coaxial electrospun fiber system to provide broad and tunable release rates for the HIV entry inhibitor maraviroc. Specifically, we prepared ethyl cellulose (EC)-shell and polyvinylpyrrolidone (PVP)-core fibers that were capable of releasing actives over a range of hours to several days. We further demonstrated simple and effective methods for combining core-shell fibers with rapid-release formulations to provide combined instantaneous and sustained maraviroc release. In addition, we investigated the effect of varying release media on maraviroc release from core-shell fibers, and found that release was strongly influenced by media surface tension and drug ionization. Finally, in vitro cell culture studies show that our fiber formulations were not cytotoxic and that electrospun maraviroc maintained similar antiviral activity compared to neat maraviroc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.