Abstract

As a biocompatible and biodegradable polymer, poly(lactide-co-glycolide) (PLGA) has been widely used as a carrier to achieve controlled drug delivery in various forms. Focusing on skin tumor treatment, herein 5-fluorouracil (5-FU) was embedded into the core of coaxially electrospun PLGA fibers to get a drug-loaded core–shell fibrous membrane. In the coaxial electrospinning, poly(vinylpyrrolidone) was applied in the inner flow to facilitate the formation of the core–shell structured fibers. The morphology and micro-structure of the fibers were characterized by scanning electron microscope and transmission electron microscope. The influences of the molecular weights and chemical compositions of PLGA copolymers on the release behaviors were studied. The cytotoxicity of the fibers was characterized by cell proliferation and living-dead cell staining experiments. The results showed that faster release rates would be obtained if the copolymers were of lower molecular weights and higher fraction of glycidyl unit. All the prepared 5-FU loaded fibrous membranes were non-cytotoxic, suggesting their potential applications in skin tumor treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call