Abstract
An extended-gate field-effect transistor (EGFET) of coaxial-structured ZnO/silicon nanowires as pH sensor was demonstrated in this paper. The oriented 1-μm-long silicon nanowires with the diameter of about 50nm were vertically synthesized by the electroless metal deposition method at room temperature and were sequentially capped with the ZnO films using atomic layer deposition at 50°C. The transfer characteristics (IDS–VREF) of such ZnO/silicon nanowire EGFET sensor exhibited the sensitivity and linearity of 46.25mV/pH and 0.9902, respectively for the different pH solutions (pH 1–pH 13). In contrast to the ZnO thin-film ones, the ZnO/silicon nanowire EGFET sensor achieved much better sensitivity and superior linearity. It was attributed to a high surface-to-volume ratio of the nanowire structures, reflecting a larger effective sensing area. The output voltage and time characteristics were also measured to indicate good reliability and durability for the ZnO/silicon nanowires sensor. Furthermore, the hysteresis was 9.74mV after the solution was changed as pH 7→pH 3→pH 7→pH 11→pH 7.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.