Abstract
Controllable drug-loaded dressings combined with induced stem cell differentiation have received considerable interest. In this study, a directional core-shell drug-loaded magnetocaloric response PCL/Gelatin-Antibiotics/Fe3O4 multifunctional dressing was developed. Due to the magnetothermal heating effect of magnetic nanoparticles and the contraction of elastic electrospun fibers, the fibers release antibiotics as needed to prevent drug-resistant infection. IV collagenase catalyzes the degradation of gelatin by achieving an optimum reaction temperature, the purpose of which is also to reduce the viscosity of liquid gelatin and promote the release of drugs. With the sacrifice of gelatin, the directional structure of scaffold and the internal steric hindrance promoted stem cell differentiation and wound healing. The expression of Vimentin, VEGF, bFGF, TGF-β, and THY1 was confirmed by fluorescence immunostaining and RT-PCR. Western blot was used to detect expression of Vimentin, collagen, CD34, and CD31 in the (5/5, v/v) PCL/gelatin scaffold incubated with mouse wound. Therefore, the functional fibers can significantly accelerate the healing process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.