Abstract

This work advances laser absorption spectroscopy with measurements of aluminum monoxide (AlO) temperature and column density in extreme pressure (P > 60 bar) and temperature (T > 4000 K) environments. Measurements of the AlO A2Πi-X2Σ+ transition are made using a microelectromechanical system, tunable vertical cavity surface emitting laser (MEMS-VCSEL). Simultaneous emission measurements of the AlO B2Σ+-X2Σ+ transition are made along a line of sight that is coaxial with the laser absorption. Absorption temperature fits agree with emission spectra for a T = 3200 K, P = 9 bar case. In cases with T > 4000 K, P > 60 bar, absorption fits match the ambient temperature while emission fits over-estimate it, owing to high optical depths. These data juxtapose passive and active spectroscopic methods and demonstrate the versatility of AlO laser absorption in high-pressure and high-temperature environments where experimental data remain scarce, and engineering models will benefit from refined measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.