Abstract

Most of the present-day millimeter-wave gyrotrons developed for plasma experiments in controlled fusion reactors utilize cylindrical cavities operating in high-order modes. The choice of modes should obey certain restrictions dictated by the achievable mode selection and the maximum admissible level of the density of microwave ohmic losses in the cavity walls. Even with these restrictions, developers have successfully manufactured quasi-continuous-wave gyrotrons operating in the short millimeter wavelength bands that are capable of delivering microwave power on the order of 1 MW. To upgrade gyrotron power to the level of several megawatts, more complicated coaxial microwave circuits should be used. This statement is also valid for relativistic gyroklystrons, which are currently under development for driving future linear accelerators. This paper presents an overview of the history of the development of coaxial gyrodevices, a discussion of the physics-based issues which are the most important for their operation, a description of the state of the art in the development of coaxial gyrodevices for the above-mentioned applications, and a brief forecast for their future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.