Abstract

LiFePO4/C/Ag composite hollow nanofibers were synthesized by calcination of the coaxial electrospun nanofibers with polyvinyl pyrrolidone (PVP) as core and [LiOH + Fe(NO3)3 + H3PO4]/PVP/AgNO3 as shell. PVP was used as the electrospinning template and carbon source. During the calcination, LiFePO4 precursor was transformed to LiFePO4 while AgNO3 and PVP were decomposed into silver and carbon. The morphology and properties of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, BET specific surface area analysis, electrochemical impedance spectroscopy and galvanostatic charge–discharge measurements. The results indicate that the mean diameter of as-prepared LiFePO4/C/Ag composite hollow nanofibers is 154.5 ± 18.6 nm and the BET specific surface area is 119.14 m2 g−1. The addition of silver and carbon does not affect the structure of LiFePO4, but improves its electrochemical performances. At the current density of 0.2 C, the initial discharge capacity of LiFePO4/C/Ag hollow nanofibers electrode is 138.71 mAh g−1, which is higher than that of LiFePO4/C nanofibers electrode. The improved specific capacity may be attributed to increase electrode conductivity after the introduction of silver. The formation mechanism of the LiFePO4/C/Ag composite hollow nanofibers was also proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.