Abstract

Thermal management materials are obtaining increasing research interest, due to the requirement on energy conservation and environment protection. However, the complex designs and energy-consuming manufacturing processes prohibit their wide spread practical account. 3D printing is an intriguing revolutionary technology in fabricating anisotropic thermal conductive materials because of its inherent virtues on directional additive manufacturing a complicated subject with designed microstructure. We demonstrate the coaxial 3D printing along with directional freezing processes to obtain anisotropic thermal conductive composite aerogel consisting of carbon nanotubes (CNTs) and cellulose nanofibers (CNFs). The as prepared composite aerogel, with the thermal conductive CNTs as inner layer, and the insulate CNFs as outer layer, presented remarkable anisotropic thermal conductivity with 0.025 W (m K)−1 in the axial direction and 0.302 W (m K)−1 in the radial direction. The Young’s modulus of the CNTs/CNFs composite aerogel was tested to be 10.91 MPa in the axial direction, and 2.62 MPa in the radial direction, respectively. The coaxial 3D printed CNTs/CNFs composite aerogel has great potential application in electronics, especially for those custom-tailored products and the related field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.