Abstract

The aim of the current study is to preserve the emulsomal vesicles against the harsh condition of gastrointestinal tract (GIT), after oral administration, employing tripolyphosphate (TPP)-crosslinked chitosan as a protective coating layer. Rutin was used as a model drug with evaluation of anti-hyperlipidemic activity in rats. The rutin loaded unmodified emulsomes were prepared using tripalmitin and soybean phosphatidylcholine (SPC), by thin film method. Drug loading for the prepared formulations ranged between 6.80 and 15.50 %. The selected formulation (RT-Emuls-6) comprised tripalmitin and SPC, molar ratio 1:1, and exhibited particle size (PS) and zeta potential (ZP) of 150.40 nm and −35.35 mV, respectively. RT-Emuls-6 was then modified by coating with either solely chitosan (RT-Emuls-6-Ch) or TPP-crosslinked chitosan (RT-Emuls-6-Ch-TPP-1). The latter exhibited PS and ZP values of 269.60 nm and 37.17 mV, respectively. Transmission electron microscopy of RT-Emuls-6-Ch-TPP-1 showed a dense pale greyish layer of a coating layer of chitosan crosslinked with TPP surrounding SPC bilayers. Fourier transform infrared spectroscopy analysis along with X-ray powder diffraction confirmed cross-linking between chitosan and TPP. Stability study in the simulated GIT fluids revealed that the order of rutin retained percentage was RT-Emuls-6-Ch-TPP-1 > RT-Emuls-6-Ch > RT-Emuls-6 (80.02, 50.66 and 44.41 %, respectively for simulated gastric fluid and 63.50, 55.66 and 24.00 %, respectively for simulated intestinal fluid, after 2 h incubation). Anti-hyperlipidemic activity of rutin loaded emulsomes was evaluated, after oral administration, in a high fat diet-induced hyperlipidemia in rats. The order of activity was as follows: RT-Emuls-6-Ch-TPP-1 > RT-Emuls-6-Ch > RT-Emuls-6 > free rutin. These findings revealed the potential of TPP-crosslinked chitosan as a protective coating layer for enhancing the stability of emulsomes against the harsh condition of GIT. RT-Emuls-6-Ch-TPP-1 had a potent anti-hyperlipidemic activity via regulation of lipids, oxidative stress, irisin and uncoupling protein 1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call