Abstract

A set of elastomeric scaffolds with a well defined porous structure was prepared with a template leaching procedure and coated with hyaluronic acid solutions. Depending on the coating process parameters the hyaluronic acid deposited on the pores had configurations ranging from thin disconnected aggregates to a thick continuous layer on the pore surface. The development of the coating layer was studied by scanning electron microscopy and the materials were subjected to dynamical and equilibrium swelling experiments in a water vapor ambient of fixed activity. The porosity change due to coating and to swelling of the coating layer were determined. The hyaluronic acid coating the pores has a different swelling capacity depending on the type of layer formed, as a consequence of the scaffold constraint and of the layer typology. These factors were investigated analytically by modifying the standard theory of gel swelling. An experimental quantity is introduced which reflects the constrainment build-up on gel swelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.