Abstract

In this study, a TiVCr hydrogen storage alloy was coated onto the anode gas diffusion layer (GDL) of proton exchange membrane fuel cells (PEMFCs) by direct-current sputtering to improve cell performance and durability. Scanning electron microscopy analysis indicated that the GDLs are well coated and that the TiVCr coating shows pyramidal protrusions. The single-cell performance of PEMFCs, in which the GDLs were coated with TiVCr hydrogen storage alloy as the anode, was investigated at cell temperatures of 25 and 65 °C (non-humidification and full-humidification conditions, respectively). The membrane-electrode assembly (MEA) with TiVCr hydrogen storage alloy-coated GDL (10 min sputtering time) exhibited optimal performance at 25 and 65 °C, with power densities 18.49% and 43.67%, respectively, higher than that without TiVCr hydrogen storage alloy coating. The MEA with the TiVCr-coated GDL obtained by 60 min of sputtering exhibited 90.6% greater durability under no-hydrogen flow conditions than the MEA without the TiVCr hydrogen storage alloy coating. These results demonstrate for the first time that GDLs coated with a hydrogen storage alloy such as TiVCr may be applied in PEMFCs to improve their performance and durability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call