Abstract
In the present work, lignin nanospheres (LNS, average diameter 166.43 nm) were prepared and the affecting parameters, the absorbed types, and mechanisms of their interactions with type-A gelatin (AG) were explored. The findings demonstrated that upon AG coating, the ζ-potential of LNS sharply decreased and concluded a negative-to-positive shift, while the average diameter and polydispersity index increased significantly. AG presented the highest coating capacity (0.32 mg/mg, db) onto LNS (0.5 mg/mL) at an optimum pH of 4.0 and an AG concentration of 1.0 mg/mL. The adsorption of AG onto LNS could be well described by the Hill model (R2 = 0.9895), which was characterized as positive synergistic adsorption by the Hill coefficient (1.32) and physical adsorption by the free energy (3.70 kJ/mg). The spectral analysis revealed that the interactions between AG and LNS were mainly driven by electrostatic forces (ΔG < 0, ΔH < 0, and ΔS > 0) together with the assistance of hydrogen bonds and hydrophobic interactions, which companied a decrease of α-helix (4.04 %) and β-turn (0.60 %) and an increase of β-sheet (3.10 %) and random coil (1.53 %) of the secondary structure of AG. The results herein certainly favored the hydrophilic/hydrophobic change of LNS/AG and the quality control of a binary system consisting of lignin and gelatin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.