Abstract

The present research work describes the synthesis and characterization of CuO/SiO2 for coating-perforated 304 stainless steel (SS) substrates to degrade methylene blue and amoxicillin under visible light irradiation. The foregoing photocatalytic system was achieved through the coprecipitation method by adding pure CuO to a SiO2 sol at 1:5, 1:10, and 1:15 molar ratios. The conditions for carrying out the depositions on the SS substrates (three per substrate) involved an immersion rate of 90 mm/min with a drying time of 20 min at 120 °C. The XRD technique confirmed the presence of the SiO2 amorphous phases and CuO monoclinic systems in the coatings, with a particle size distribution ranging from 0.5 to 2.5 μm (with an average of 1.26 ± 0.06 μm). As for SEM, it revealed a homogeneous coating surface without cracks. The produced photoactive CuO/SiO2 coatings were capable of degrading methylene blue (98%) at 1500 min and amoxicillin (55%) at 450 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.