Abstract
A concept for the growth of silica shells with a thickness of 5–250 nm onto oleate-coated NaYF4:Yb3+/Er3+ upconversion nanoparticles (UCNP) is presented. The concept enables the precise adjustment of shell thicknesses for the preparation of thick-shelled nanoparticles for applications in plasmonics and sensing. First, an initial 5–11 nm thick shell is grown onto the UCNPs in a reverse microemulsion. This is followed by a stepwise growth of these particles without a purification step, where in each step equal volumes of tetraethyl orthosilicate and ammonia water are added, while the volumes of cyclohexane and the surfactant Igepal® CO-520 are increased so that the ammonia water and surfactant concentrations remain constant. Hence, the number of micelles stays constant, and their size is increased to accommodate the growing core–shell particles. Consequently, the formation of core-free silica particles is suppressed. When the negative zeta potential of the particles, which continuously decreased during the stepwise growth, falls below −40 mV, the particles can be dispersed in an ammoniacal ethanol solution and grown further by the continuous addition of tetraethyl orthosilicate to a diameter larger than 500 nm. Due to the high colloidal stability, a coalescence of the particles can be suppressed, and single-core particles are obtained. This strategy can be easily transferred to other nanomaterials for the design of plasmonic nanoconstructs and sensor systems.
Highlights
Lanthanide-based nanocrystals have gained importance as inorganic optical reporters in recent years [1,2,3]
We present an approach for growing a silica shell with an adjustable thickness between 5 and 250 nm onto oleatecoated NaYF4:Yb3+/Er3+ upconversion nanoparticles (UCNP)
After an initial silica shell of 5–10 nm was coated onto the UCNP, a further growth by a Stöber-like growth process was attempted, i.e., the particles were redispersed in ethanol, and ammonia water, water and tetraethyl orthosilicate (TEOS) were added
Summary
Lanthanide-based nanocrystals have gained importance as inorganic optical reporters in recent years [1,2,3]. After an initial silica shell of 5–10 nm was coated onto the UCNP, a further growth by a Stöber-like growth process was attempted, i.e., the particles were redispersed in ethanol, and ammonia water, water and TEOS were added.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.