Abstract

The aim of this study was to show that cathodic polarization can be used for coating commercial implant surfaces with an immobilized but functional and bioavailable surface layer of strontium (Sr). Moreover, this study assessed the effect of fluorine on Sr-attachment. X-ray photoelectron spectroscopy revealed that addition of fluorine (F) to the buffer during coating increased surface Sr-amounts but also changed the chemical surface composition by adding SrF2 alongside of SrO whereas pre-treatment of the surface by pickling in hydrofluoric acid appeared to hinder Sr-attachment. Assessment of the bio-availability hinted at a positive effect of Sr on cell differentiation given that the surface reactivity of the original surface remained unchanged. Additional SrF2 on the surface appeared to reduce undesired surface contamination while maintaining the surface micro-topography and micro-morphology. Anyhow, this surface modification revealed to create nano-nodules on the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call