Abstract
The purpose of this study was to develop a novel sealant that would seal prosthetic vascular graft interstices and be accessible for protein binding. Crimped knitted Dacron vascular grafts were cleaned (CNTRL) and hydrolyzed in boiling sodium hydroxide (HYD). These HYD grafts were sealed using an 11% solids solution of a polyether-based urethane with carboxylic acid groups (PEU-D) via a novel technique that employs both trans-wall and luminal perfusion. Carboxylic acid content, determined via methylene blue dye uptake, was 2.3- and 4.2-fold greater in PEU-D segments (1.0±0.27 nmol/mg) as compared to HYD and CNTRL segments, respectively. Water permeation through PEU-D graft (1.1±2 ml/cm 2 min −1) was comparable to collagen-impregnated Dacron (9.8±10 ml/cm 2 min −1). Non-specific 125I-albumin ( 125I-Alb) binding to PEU-D segments (18±3 ng/mg) was significantly lower than HYD and CNTRL segments. 125I-Alb linkage to PEU-D using the crosslinker EDC resulted in 5.7-fold greater binding (103±2 ng/mg) than non-specific PEU-D controls. However, covalent linkage of 125I-Alb to PEU-D was 4.9- and 5.9-fold less than CNTRL and HYD segments with EDC, respectively. Thus, ionic polyurethane can be applied to a pre-formed vascular graft, seal the interstices and create “anchor” sites for protein attachment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.